

First UK Solar Chemicals Network Symposium

Liverpool, 11th and 12th January 2024

11th January

09:00 Registration opens

10:00	Alex Cowan and Jenny Zhang	
	Welcome, introduction to the network and pre-event questionnaire feedback	

Session 1 – Biocatalysts	
Chair tbc	

10:20	Introduction to Theme (10 minutes)		
	(overview of theme)		
10:30	Invited Speaker – Professor Stephen Wallace, University of Edinburgh		
	Phototrophic Bacteria for Biocompatible Alkene Hydrogenation		
11:05	Coffee break		
	1 st Floor Registration Area		
11:30	C Megarity, University of Manchester		
	'Multi-enzyme Cascades Jam-packed and Electrified'		
11:55	M Kuhnel, University of Hoheneim		
	'Solvent engineering as a tool to enable oxygen-tolerant solar chemicals production with		
	air-sensitive enzymes'		
12.20	Discussion around the Theme		
12:35	Lunch and Posters		
	1 st Floor Registration Area		

Session 2 – Advanced Electrocatalysis Chair and Theme Lead: Dr Ifan Stephens (Imperial College London)

13:30	Introduction to Theme (10 minutes)		
	(overview of theme)		
13.40	Invited Talk – Dr Reshma Rao, Imperial College London		
	'Operando characterisation of electrochemical interfaces'		
14:15	H Jang, University of Liverpool		
	'Cationic surfactant switches on the carbon dioxide reduction reaction at gold surfaces'		
44.40			
14:40	<i>C</i> Iseng , Imperial College London 'Probing the Effects of Doped Iridium Oxide on Oxygen Evolution Reaction Using Operando Spectroelectrochemical Techniques'		
15:05	Discussion around the Theme		
15.20	Coffee break		
	1 st Floor Registration Area		

Chair and Theme Lead: Professor Elizabeth Gibson (Newcastle University)

15:40	Introduction to Theme (10 minutes)
	(overview of theme)
15:50	Invited Speaker – Professor Tomas Edvinsson, Newcastle University/Uppsala
	University
	Pathway to utilize IR photons for efficient solar fuel generation
16:25	Y Liu, University of Cambridge
	'Semiconductor-enzyme hybrids for solar chemical synthesis'
16:50	D Benetti, Imperial College London
	'Photoactivation: manipulating the charge dynamics of metal oxides photoelectrodes with
	light'
17:15	Discussion around the Theme
17:30	Poster session and drinks reception
	1 st Floor Registration Area

12th January

09:00 Welcome by Professor Alex Cowan – SCN Director (hand over to themes)

Session 4 – Device Engineering and Carbon Capture Chair and Theme Leads: Dr Alex Forse (University of Cambridge)

09:05	Introduction to Theme (10 minutes)		
	(overview of theme)		
09:15	Invited Speaker – Professor Camille Petit, Imperial College London		
	"Gas phase CO2 photoreduction using porous materials"		
09:50	S Kar, University of Cambridge		
	'Integrated Capture and Solar-driven Utilization of CO2 from Flue Gas and Air into Syngas'		
10:15	M Daboczi, Imperial College London		
	'Halide perovskite and organic semiconductor photoelectrodes for stable water oxidation		
	and unassisted solar water splitting'		
10:40	Discussion around the Theme		
10:55	Coffee break		
	1 st Floor Registration Area		

Session 5 -Chair: Professor Jenny Zhang (University of Cambridge)

11:15	S Yao, Imperial College London 'Spectroscopic Investigation of Long-lived Electrons in Titanium-Based Metal-Organic Frameworks for Hydrogen Evolution in Dark Photocatalysis'
11:40	J Alvim, Imperial College London 'Investigation of structural instability of Cu2WO4 photocathode during CO2 reduction reaction'

12.05	C Li, University of Liverpool 'Interplay of D/A twist angle and aggregation (π - π interaction) in controlling the nature of CT state formation'
12:30	E McQueen, University of Strathclyde 'Quantitative photocatalytic conversion of CO ₂ to highly concentrated formic acid using a hybrid photocatalyst consisting of a conjugated polymer and a supramolecular complex'
12:55	Lunch and Posters 1 st Floor Registration Area

Session 6 -Chair: Professor Alex Cowan (University of Liverpool)

13:35	O Thwaites, University of Liverpool 'Unravelling the Roles of Integral Polypeptides in Excitation Energy Transfer of Photosynthetic RC-LH1 Supercomplexes'
14:00	T Li, University of Manchester 'Sustainable Electrosynthesis of Cyclohexanone Oxime through Nitrate Reduction on a Zn- Cu Alloy Catalyst'
14:25	F Podjaski , Imperial College London 'Photophysics of gIDTBT nanoparticles in presence of aqueous salt ions and impacts on photocatalysis'
14:50	P Sharma, University College London 'Catalysts for selective electrochemical conversion of CO ₂ to methanol'
15:15	Closing comments

Posters

Number	Name	Poster Title
		Catalysts for selective electrochemical conversion of CO_2 to
1	P Sharma	methanol
		Ultrafast Electron Transfer from CuInS ₂ Quantum Dots to a
		Molecular Catalyst for Hydrogen Production: Challenging
2	AJ Bagnall	Diffusion Limitations
		Taking Inspiration from the Natural Carboxysome to Utilise
3	S Cobb	Atmospheric Concentrations of CO ₂
		Bipolar membrane electrolyzers for CO ₂ reduction using
4	B Siritanarakul	molecular catalysts
		Photophysics of gIDTBT nanoparticles in presence of aqueous salt
5	F Podjaski	ions and impacts on photocatalysis
		Photocatalytic Reforming of Diols over Pt/TiO ₂ for the Production
6	L Roebuck	of H ₂ and Value-Added Chemicals
		Unassisted (Photo)-electrochemical Water Splitting Using Multi-
7	S Saravanabavan	Junction Solar Cells in Microgravity
		Stabilized states (shallow traps) created by glycol sidechain on
8	T Fei	Polymer Photocatalyst FgBT extending charges lifetime
		Probing the Effects of Doped Iridium Oxide on Oxygen Evolution
9	C Tseng	Reaction Using Operando Spectroelectrochemical Techniques
		Halide perovskite and organic semiconductor photoelectrodes for
10	M Daboczi	stable water oxidation and unassisted solar water splitting
11	Y Liu	Semiconductor–enzyme hybrids for solar chemical synthesis
12	J Yang	Photonic band gap engineering of SnO ₂
		Iridium doped Antimony Tin Oxide as a stable material for the
13	A Malik	Oxygen Evolution Reaction in acid
	A Mohamad	Hybrid photothermal-photocatalyst sheets for solar-driven
14	Annuar	overall water splitting coupled to water purification
		Towards Pairing Solar Chemical Production with Central
15	A Sutton-Cook	Metabolism of S. oneidensis MR-1
		Organic semiconductor-BiVO ₄ tandems for solar-driven H ₂ O and
16	CWS Yeung	CO ₂ splitting
		Development of Hybrid Perovskite as Visible Light Photocatalyst
17	H Wang	for Solar Fuel Production
	Santiago Rodriguez	
18	Jimenez	Valorisation of CO ₂ and other abundant waste streams
10	LWang	Photonic band gan anging oring of SnO
19	1 Mail8	Prioronic Danu gap engineering OF SilO ₂
20	I Oldham	nivesugating thange tarrier dynamics of metal oxide
20		Pionoss photosoforming modiated by Ni(II) modified Bi M(O, and
21	LL Naccimenta	biomass photorerorming mediated by $Ni(II)$ modified Bi_2WU_6 and Nb_0 , photocotolysts
		IND205 PHOLOCALAIYSIS
22	Min	Efficient Cu_2O Photocathodes for Aqueous Photoelectrochemical
	IVI Ald	CO2 Reduction to Formate and Syngas
22	VI:	I Owards High-throughput Functional Materials Discovery for
23		
24	R Tort	Searching for the Rules of Electrochemical Nitrogen Fixation

1	1	
25	H Ullah	Computational Modeling of Energy Materials
		Develop new organic photoactive materials for solar energy
26	Q He	conversion and photodetection
		Charge dynamics study in the effect of facet-engineering to BiVO ₄
27	Т Не	photocatalysts systems
		Investigating the platinisation of p-type indium phosphide and
28	E Sokalu	the effect of precursor cations on surface morphology